Illinois Institute of Technology Physics

M.Sc. Comprehensive and Ph.D. Qualifying Examination PART I

Thursday, January 11, 2018 4:00 - 8:00 PM

Physical Constants

Speed of light in vacuum	С	=	2 <i>:</i> 998 10 ⁸ m/s
Planck's constant	h	=	6 <i>:</i> 626 10 ³⁴ J s
	\hbar	=	h=2
		=	1 <i>:</i> 055 10 ³⁴ J s
		=	6 <i>:</i> 582 10 ¹⁶ eV s
Permeability constant	0	=	4 10 ⁷ N/A ²
Permittivity constant	$\frac{1}{4}$	=	8:988 10 ⁹ N m ² /C ²
Fine structure constant	Ū	=	$\frac{e^2}{4 \circ \hbar c}$
		=	$7.30 10^{-3} = \frac{1}{137}$
Gravitational constant	G	=	6.67 10 ¹¹ m ³ /s ² kg
Avogadro's number	N_A	=	6:023 10 ²³ mole ¹
Boltzmann's constant	k	=	1 <i>:</i> 381 10 ²³ J/K
		=	8 <i>:</i> 617 10 ⁵ eV/K
kT at room temperature	<i>k</i> 300 K	=	0.0258 eV
Universal gas constant	R	=	8:314 J/mole K
Stefan-Boltzmann constant		=	5:67 10 ⁸ W/m ² K ⁴
Electron charge magnitude	е	=	1:

Problem 3:

A board of length L and mass M

Problem 6: A thermally insulated cylinder contains either Argon, Methane, or Air at room temperature. The contents are rapidly compressed to a volume 1/2 of the initial volume, and the pressure increases to approximately 2.5 of the initial pressure. Which gas is in the cylinder?

Problem 7:

A system in equilibrium at temperature T of noninteracting spin-one particles of magnetic moment is placed in a constant magnetic eld **B**. Derive an expression for the magnetization as a function of temperature.

Problem 8:

A potential energy of molecules in a certain central 3D eld depends on a distance r from the eld center as $U = ar^2$, where a is a positive constant. The gas temperature is T, the molecules concetration at the center of the eld is n_0 . Find:

- a) The number of molecules at the distance from the center of the eld between r and r + dr.
- b) The most probable distance between a molecule and the center of the eld.
- c) The fraction of molecules in a spherical layer between r and r + dr.
- d) How many times the molecules concentration at the center of the eld will increase if the temperature increase times.