Illinois Institute of Technology Physics

M.Sc. Comprehensive and Ph.D. Qualifying Examination PART II Saturday, January 13, 2018

12:00 - 4:00 PM

General Instructions

Physical Constants

Speed of light in vacuum	С	=	2 <i>:</i> 998 10 ⁸ m/s
Planck's constant	h	=	6 <i>:</i> 626 10 ³⁴ J s
	\hbar	=	h=2
		=	1 <i>:</i> 055 10 ³⁴ J s
		=	6 <i>:</i> 582 10 ¹⁶ eV s
Permeability constant	0	=	4 10 ⁷ N/A ²
Permittivity constant	$\frac{1}{4}$	=	8:988 10 ⁹ N m ² /C ²
Fine structure constant	Ū	=	$\frac{e^2}{4 \circ \hbar c}$
		=	$7.30 10^{-3} = \frac{1}{137}$
Gravitational constant	G	=	6.67 10 ¹¹ m ³ /s ² kg
Avogadro's number	N_A	=	6:023 10 ²³ mole ¹
Boltzmann's constant	k	=	1 <i>:</i> 381 10 ²³ J/K
		=	8 <i>:</i> 617 10 ⁵ eV/K
kT at room temperature	<i>k</i> 300 K	=	0.0258 eV
Universal gas constant	R	=	8:314 J/mole K
Stefan-Boltzmann constant		=	5:67 10 ⁸ W/m ² K ⁴
Electron charge magnitude	е	=	1:

Problem 1:

One end of a horizontal track of width I and negligible resistance is connected to a capacitor of capacitance C charged to voltage V_0 of polarity shown in the gure. The inductance of the assembly is negligible. The system is placed in a homogeneous vertical magnetic eld B pointing into the page. A frictionless conducting rod of mass m and resistance R is placed perpendicular onto the track. After the capacitor is fully charged the position of the switch S is changed from the position indicated by the full line to the position indicated by the dotted line, and the rod starts moving.

- (a) In which direction does the rod move, and why?
- (b) What is the maximum velocity that the rod acquires?

Problem 2:

A charge density $_0$ is placed at time t = 0 in a small region in the interior of a homogeneous charge-neutral material that has electrical conductivity .

- (a) Derive an expression for the time evolution of the charge density in that region, c(t), with c(0) = 0. Hint: use a continuity equation.
- (b) Estimate how long it will take (in seconds) for the charge density to decrease to 1/1000 of its initial value if the material is (i) copper with conductivity $= 1=(2 \ 10^{8} \ m)$ and (ii) quartz with conductivity $= 1=(10^{16} \ m)$.

Use $''_0 = 8.85 \quad 10^{12} \text{ C}^2/\text{Nm}^2$.

Problem 3:

A surface of an in nite cylinder of radius R is charged with the charge density () =

Problem 4:

A one-dimensional particle of mass *m* and energy *E* is incident on the -function potential $V(x) = V_0(x)$.

- (a) Find the re ection and transmission coe cients.
- (b) Find the phase shift of the transmitted wave, and the di erence

$$(E / 1) (E / 0)$$
:

Problem 5:

Consider an electron constrained to move in the xy plane under the in uence of a uniform magnetic eld of magnitude B oriented in the +2 direction. The Hamiltonian for this electron is

$$\mathbf{H} = \frac{1}{2m} \quad \mathbf{p}_{x} \quad \frac{e}{c}A_{x}^{2} + \mathbf{p}_{y} \quad \frac{e}{c}A_{y}^{2} \quad .$$

where *m* and *e* are the mass and charge of the electron, and *c* is the speed of light.

- (a) Find a suitable expression for A so that p_x is a constant of motion for the above Hamiltonian.
- (b) With this choice for A, show that the eigenfunctions of H can be written in the form

$$(X;Y) = e^{\frac{l}{2}p_X X} (Y);$$

where (y) satis es the Schrodinger equation for a one-dimensional harmonic oscillator whose equilibrium position is $y = y_0$. Find the e ective spring constant k for this oscillator and the shift of the origin y_0 in terms of p_x , B, m, e, c.

- (c) Find the energy eigenvalues for this system, and indicate degeneracies.
- (d) For the remainder of the problem, suppose we further restrict the particles to live in a square of side length *L*. Suppose we demand periodic boundary conditions. What are the possible values of p_x ?

Problem 6:

Prove the following relation, where \hat{i} is an angular momentum operator:

$$h_{i}^{h} p_{x}^{2} + p_{y}^{2} + p_{z}^{2} = 0:$$

Problem 7:

In a December IIT M.S. Thesis, the production and decay of a supersymmetric single top squark t