122-Introduction to Calculus

- Course Description from Bulletin: Basic concepts of calculus of a single variable; limits, continuity, derivatives and integrals. Applications.1(3)
- Enrollment: This course does not count for graduation in emgineering, mathematics, natural science or computer science degree program

Textbook(s): Calter & Calter, Technical Mathematics with Calculosed., Wiley & Sons, 2011.

Other required material: None

Prerequisites None

Objectives:

- 1. Students will learn to compute the derivative using the limit definition.
- 2. Students will learn to compute derivatives using the basic formulas.
- 3. Students will learn to compute tangent lines to graphs as local linear approximations.
- 4. Students will learn to find extreme pts rof functions.
- 5. Students will learn the basic algebraic properties of the logarithmic and power functions and their derivatives.
- 6. Students will learn to compute basic antiderivatives.
- 7. Students will learn to use substitution to evaluate definite and indefinite integrals.
- 8. Students will learn to find areas of regions in rectangular and polar coordinates using the definite integral.

Lecture schedule: Three weekly 75 minute sessions, which ynvary on a weekly basis between one towo 75 minute letures and one towo 75 minute workshop sessions.

Cours	e Outline:	Hours	
1.	Basic properties of linear, quadration, d piecewise functions		
	including their compositions, limits and graphs	7	
2.	Derivatives – limit definition rules for computation	7	
3.	Basic applications of the erivatives as eate of change	4	
4.	Chain rule and implicit differentiation	7	
5.	Graph stetching in Cartesian coordinates; optimization	7	
6.	Polar plotting – the slope and inclination of a polar curve	4	
7.	Asmeiderivationegrand the definite integralolar p6(lo)2i()Tj 8. App	lications of the integral	to find

olar coordina**t**es

3 0 Td ()Tj -0.003rfind

Syllabus prepared by Art Lubin andDavid Maslanka Date: 12/15/05 Revised 08/04/08, 12/08/10, 11/01/12, 07/14/15