Math 380-Introduction to Mathematical Modeling

Course Description from Bulletin: This course provides an introduction to problem driven (as opposed to meth**dd**ven) applications of mathemati**x** is a focus on design and analysis of models using tools from all parts of mathem(attres) (C)

Enrollment: Required for AM and Elective for other majors.

Textbook(s):Giordano, Fox, Horton, A First Course in Mathematical Modeling, 5th edition, Cengage,2013.

Other required material: Use of computational software such asTMAB or Mathematica, both widely available on campus.

Prerequisites: CS 104, MATH 251, MATH 252 (concurrent), MATH 332

Objectives:

- 1. Students will develop an understanding of applied mathemastiasthoughprocess and a toolbox for the study of realworld phenomena from engineering, natural and social sciences.
- 2. Students will learn concepts and tools from different parts of mathemations discrete, and probabilisticas they are applied tobuild and refine models for various applications.
- 3. Students will study how to compare the modeling results to observations and how models can be improved.
- 4. Students will do **a** 8–10 week long project where they apply the modeling process to analyze an open ended **reise** problem, with a deliverable of a project report and programming implementation.
- 5. Students will develop good habits for understanding, communicating, and writing mathematicaknowledge through classroom participation, homework, and projects

Lecture schedule:3 50 minute (or 2 75 minute) lectures per week

Course Outline: Hours					
1.	1. Discrete change in financial aniological population systems – Difference				
	equations and discrete dynamicestems solutions and tability	5			
2.	Physical nodels- Proportionaty and geometricis milarity	3			
3.	Model fitting – Errors, Chebyshev criterion, least squariterion, linear				
	regression, and data transformation	5			
4. Discrete optimization modelsLinear optimization, gometic and algeb					
solutions, integer programand combinatorial optimization binary de					
		3			
5.	5. Network models- Graphs and networks, network flowassignment probler				
	graph coloring, vertex covers, local search atgors	5			
6.	5. Discrete probabilistic models – Finite discrete timerkov chains and station				
	distribution component andystem reliability	2			
7.	Simulation Modeling- Monte Carlo algorithms and om point generation,				
	queuing models	3			

- 8. Population nodels– Ordinary differential equations, equibria, phase diagrams and solutions fields 4
- 9. Competing species an deplator prey models- Dynamical systems, Euler's method, solving ihear dynamical systems 5
- 10. Continuous optimiztion models- Multivariable optimization, gradient method, Lagrange multipliers, Newton's method 3
- 11. Special topics- e.g, complex network models, garheebretic models 3

Assessment	Homework	15-25%
	Semester Project	20-30%
	Mid-Term Exams	20-30%
	Final Exam	20-30%

Syllabus prepared by Hemanshu Kaul and Gregory Fasshauer Date: 10/01/2014