Math 402 – Complex Analysis

Course Description from Bulletin: Analytic functions, conformal mapping, contour integration, series expansions, singularities and residues, and applications. Intended as a first course in the subject for students in the physical sciences and engineering. (3-0-3)

Enrollment: Required for AM majors

Textbook(s): Zill & Shanahan, A First Course in Complex Analysis with Applications (2nd ed.), Jones & Bartlett

Other required material: None

Prerequisites: Math 251

Objective

- 1. Students will be proficient in basic computations with complex numbers.
- 2. Students will be able to use Cauchy-Riemann equations and conjugate harmonic functions.
- 3. Students will be able to compute conformal mappings between simple regions.
- 4. Students will be able to apply Cauchy's Theorem and the Cauchy Integral Formulas.
- 5. Students will learn the general theory and computation of Taylor and Laurent series.
- 6. Students will be able to apply residues to the computation of line integrals.

Lecture schedule: Three 50 minute (or two 75 minute) lectures per week

Course Outline:		Hours																
1. Complex numbers and sets in the c		5																
2. Complex functions and thei4Tf0	Tc			T8(a)-1(ppings			0				Tc			Tofir				
2.	S	C o	m	7	5	2 (0)	2	7	5	0	4	5	Т	8 (5	2