Math 410 – Number Theory

Course Description from Bulletin: Divisibility, congruences, distribution of prime numbers, functions of number theory, diophantine equations, applications to encryption methods. (3-0-3)

Enrollment: Elective for AM and other majors.

Textbook(s): Burton, *Elementary Number Theory*, 6th Edition, McGraw-Hill.

Other required material: Occasional handouts

Prerequisites: MATH 230 or consent of the instructor

Objectives:

- 1. Students will achieve command of the fundamental definitions and concepts of number theory.
- 2. Students will understand and apply the core definitions and theorems, generating examples as needed.
- 3. Students will become proficient in writing proofs in elementary number theory.

	Mathematical Induction, the Binomial Theorem	
1.	Divisibility	2
	The Division "Algorithm", Greatest Common Divisor, the Euclidean	
	Algorithm & Euclid's Lemma, the Diophantine Equation $ax+by=c$.	
2.	Primes and Their Distribution	3
	The Fundamental Theorem of Arithmetic, the Sieve of Eratosthenes, t	he
	Goldbach Conjecture & other great unknowns	
3.	Congruences	3
	Basics, Binary, Decimal, & base-B Representations of Integers and Check	
	Digits, Linear Congruences, the Chinese Remainder Theorem	
4.	Fermat's Little Theorem	3
	Fermat's Little Theorem, Pseudoprimes and Carmichael Numbers, Wilson's	
	Theorem, the Fermat-Kraitchik Factorization Method	
5.	Multiplicative Functions	6
	Sum of divisors sigma \bullet (n), Number of divisors \bullet (n), Multiplicative	
	Functions, Mobius function and Mobius Inversion Formula, Euler ●-function,	
	Euler's Theorem	
6	Primitive Roots	3

The Order of an Integer modulo *n*, Primitive Roots, Lagrange's Theorem, Primitive Roots of a Prime, Primitive Roots of a Composite (without full

proof), Optional: Theory of Indices

7. Quadratic Reciprocity

Quadratic Congruences, Quadratic Residues and Nonresidues, Euler's Criterion, the Legendre Symbol & its properties, Gauss' Lemma, Germain Primes (& primes of the form 4k+1 and 8k-1), the Quadratic Reciprocity La4s9ew, (2/p) and (3/p), Quadratic Congruences with Composite Moduli

8. Introduction to Cryptography

3

6

Basics, RSA public key cryptography, the ElGame4s9el Cryptosystem

9. Options

• Recent developments in Primality Testing and Factorization

(3)

•