Math 435 – Linear Optimization

Course Description from Bulletin: Introduction to both theoretical and algorithmic aspects of linear optimization: geometry of linear programs, simplex method, anticycling, duality theory and dual simplex method, sensitivity analysis, large scale optimization via Dantzig-Wolfe decomposition and Benders decomposition, interior point methods,

1duction to both theoreatioTJ0.f-0.0001 Tc 07.19 -1. -17.61 -1.15- 0al and (, A0)naTf-0.0001 Tw 14.83 0 Td

3.	Optimality conditions Simplex method Revised simplex method and full tableau implementation	9	
	Anticycling: Bland's rule Initial basic feasible solution		
	Computational efficiency of the simplex method		
4.	Duality Theory and Sensitivity analysis	7	
	Dual linear program		
	Duality Theorems and Complementary Slackness		
	Dual Simplex method		
	Farkas' Lemma and its application to duality theorem		
_	Sensitivity analysis and Parametric programming	_	
5.	Large Scale Optimization	5	
	Delayed column generation and Dantzig-Wolfe decomposition Cutting plane methods and Benders decomposition		
	Cutting plane methods and Benders decomposition		
6.	Optional Topics (selected based on class composition and background)	11	
	Interior Point Methods		
	The von Neumann algorithm		
	The affine scaling algorithm		
	The primal path following algorithm		
Network Flow Problems			
The minimum cost flow problem and the Network simplex algorithm The maximum flow problem and the Ford-Fulkerson algorithm The assignment problem and the Auction algorithm			
	Integer Programming Gomory Cuts and Cutting plane algorithms		
	Branch and bound		
	Dynamic programming		
	IP duality and Lagrangian Relaxation		

7. Exams and Overflow

Assessment:	Homework	25-50%
	Quizzes/Tests	30-50%
	Final Exam	25-40%

Syllabus prepared by: Hemanshu Kaul Date: 2/08/2007

3