MATH 461 – Fourier Series and Boundary-Value Problems

Course Description from Bulletin: Fourier series and integrals. The Laplace, heat, and wave equations: Solution by separation of variables. D'Alembert's solution of the wave equation. Boundary-value problems. (3-0-3)

Enrollment: Required course for AM majors and elective for other majors

Textbook(s): R. Haberman, *Elementary Applied Partial Differential Equations*, 4th ed., Prentice Hall (2004), ISBN 0-13-065243-1.

Other required material:

Prerequisites: MATH 251, MATH 252

Objectives:

- 1. Students will understand how PDEs (such as the heat and wave equation) model physical phenomena and the basic structure of PDEs and their solutions.
- 2. Students will learn the separation of variable technique for solving linear secondorder PDEs (heat equation, Laplace's equation, wave equation).
- 3. Students will learn the basics of Fourier series.
- 4. Students will learn the basic properties of and how to solve regular Sturm-Liouville eigenvalue problems.
- 5. Students will learn to solve some partial differential equations in more than one space variable.

Lecture schedule: 3 50 minutes (or 2 75 minutes) lectures per week

Cours	e Outli	ne: H	ours
1.	Heat E	Equation	6
	a.	Derivation in 1D	
	b.	Different types of boundary conditions	
	с.	Derivation in 2D/3D	
2.	Separation of Variables		9
	a.	Linearity	
	b.	Eigenvalues and eigenfunctions	
	с.	Orthogonality of functions	
	d.	Separation of variables for heat equation in 1D with various boundar	У
		conditions	
	e.	Separation of variables for Laplace's equation in rectangular and circ	ular
		domains	
	f.	Maximum principle for Laplace's equation and well-posedness of	
		Laplace's equation	
3.	Fourie	er Series	9
	a.	Piecewise smooth and periodic functions	
	b.	Convergence of Fourier series	
	с.	Fourier sine and cosine series	
	d.	Term-by-term differentiation and integration of Fourier series	
	e.	Complex form of Fourier series	

4.	Vibrating Strings and Membranes			3	
	a.	Derivation of 1D wave e	quation		
	b.	Boundary conditions			
	c. Separation of variables				
5.	Sturm-Liouville Eigenvalue Problems				
a. Motivating examples (e.g., heat equation for non-uniform ro					
b. Regular Sturm-Liouville problems and their properties (gene					
	Fourier series, self-adjointness, Green's formula, orthogonality of				
eigenfunctions, Rayleigh quotient)					
	niform strings				
	d. Rayleigh-Ritz principle and approximation properties				
6.	Partial Differential Equations in Space				
	a.	Membranes of arbitrary s	of arbitrary shape		
	ry regions				
	c.	e. Wave equation for circular membranes and Bessel functions			
Assessr	nent:	Homework	10-30%		
		Quizzes/Tests	20-50%		

30-50%

Syllabus prepared by: Greg Fasshauer and Art Lubin **Date**: Dec.9, 2005

Final Exam