applications for finance and insurance. The course covers basic classes of stochastic processes: Markov chains and martingales in discrete time, Brownian motion and Poisson process. It also presents some aspects of stochastic calculus. (3-0-3)

Enrollment: Elective for AM and other majors.

Textbook(s): Basic Stochastic Processes, by Z. Brzezniak and T. Zastawniak, Springer, 2000.

Other required material: None

Prerequisites: MATH 332 or 333 or equivalent; and MATH 475, or consent of the instructor

Objectives:

- 1. Students will understand the basic concepts underlying the theory and practice of finite Markov chains in discrete time.
- 2. Students will understand basic concepts underlying the theory and practice of martingales in discrete time.
- 3. Students will understand basic concepts underlying the theory and practice of stochastic processes in continuous time, illustrated with the two primary examples: Poisson process and Brownian motion.
- 4. Students will understand some aspects of the elementary stochastic calculus for Brownian motion.

Lecture schedule: 3 50 minutes (or 2 75 minutes) lectures per week

Course Outline:	Hours
1. Conditional expectations	6
2. Discrete time martingales	8
3. Discrete time Markov chains	8
4. Poisson process	8
5. Brownian motion	9
6. Elements of Ito stochastic calculus	6

Assessment: Homework 0-30%
Quizzes/Tests 20-50%
Final Exam 30-50%

Syllabus prepared by: I. Cialenco and T.R. Bielecki

Date: November, 2013