MATH 488 – Ordinary Differential Equations and Dynamical Systems

Course Description from Bulletin: Boundary-value problems and Sturm-Liouville theory; linear system theory via eigenvalues and eigenvectors; Floquet theory; nonlinear systems: critical points, linearization, stability concepts, index theory, phase portrait analysis, limit cycles, and stable and unstable manifolds; bifurcation; and chaotic dynamics. (3-0-3)

Enrollment: Elective for AM and other majors

Textbook(s): S. Strogatz, Nonlinear Dynamics and Chaos, Perseus Publishing

Other required material:

Prerequisites: MATH 251, MATH 252

Objectives:

- 1. Students will learn nonlinear differential equations in the context of mathematical modeling.
- 2. Students will learn basic concepts in nonlinear dynamical systems, i.e., equilibrium solutions, linearization, limit cycles, stability, bifurcation, phase portraits and chaos.
- 3. Students will learn basic techniques and methods for analyzing nonlinear dynamics, i.e., Liapunov stability, index theory, Hopf bifurcation, Poincare-Bendixson theorem, stable/unstable/center manifolds and chaotic behavior.
- 4. Students will learn how to simulate nonlinear dynamics in Matlab.

Lecture schedule: 3 50 minute (or 2 75 minute) lectures per week

Course Outline:				Hours	
1.	Example equilibri	es of differential equations as math tum solutions; existence and unique	of differential equations as mathematical models; solutions; existence and uniqueness theorem;		
	boundar	y value problems; Sturm-Liouville	e theory		
2.	Linearization, linear stability, asymptotic stability, Poincare stability,			12	
	Liapunov stability; Periodic solutions, limit cycles, and Floquet theory; phase portraits				
3.	3. Bifurcations and invariant manifolds: Saddle node, pitchfork,		dle node, pitchfork, Hopf,	12	
	period-doubling, nomoclinic and neteroclinic bifurcations				
4. Sensitive dependence on initial conditions and chaos			and chaos	4	
5.	5. Applications to various problems in engineering and science		4		
Assessment:		Homework	10-30%		
		Computer Programs/Project	10-20%		
		Ouizzes/Tests	20-50%		

30-50%

Syllabus prepared by: Jeffrey Duan and Xiaofan Li **Date**: 12/19/05

Final Exam