MATH 543 – Stochastic Analysis

Course Description from Bulletin: This course will introduce the student to modern finite dimensional stochastic analysisIto formula and stochastic integration o semimartingales, c) stochastic differential equations (SDE's) imartingales, with focus on stochastic SDE's driven by Levy absolutely continuous changes of measures for semimartingales, e) applications. (3-0-3)

Enrollment: Graduate elective

Textbook(s): Klebaner, Fima C., *Introduction to Stochastic Calculus with Applications*, 2nd ed., Imperial College Press

Other required material:

Prerequisites: MATH 475, or consent of an instructor

Objectives:

- 1. Students will understand the concept and basic properties of two fundamental stochastic processes in continuous time: Brownian motion and Poisson processes.
- 2. Students will understand the concept and basic properties of continuous time semi-martingales.
- 3. Students will understand the concept, properties and use of stochastic exponents.
- 4.

Lecture schedule: 2 75 minute lectures

Course (Hours	
1. Preliminaries from calculus		3
	a. Variation of function	
	b. Riemann and Riemann-Stieltjes integrals	
	c. Differentials and integrals	
	d. Other useful stuff	
2. Preliminaries from probability		3
	a. Fields and filtrations: discrete model	
	b. Continuous model	
	c. Lebesgue-Stieltjes integral and expectations	
	d. Independence and conditioning	
	e. Stochastic processes	
3. N	Martingales	12
	a. Definitions	

b.	Basic examples: Brownian motion, Poisson process and related
	martingales
c.	Uniform integrability

d. Martingale convergence

- e. Optional stopping
- f. Quadratic variation and predictable quadratic variation; martingale representations of Brownian motion

15

6

6

- g. Stochastic integrals
- h. Localization and local martingales
- i. Martingale inequalities
- j. Martingale representation
- k. Random change of time
- 4. Semimartingales
 - a. Definitions and basic examples
 - b. Quadratic variation and covariance
 - c. Predictable processes
 - d. Boob-Meyer decompositions
 - e. Stochastic integrals
 - f. Ito formula I
 - g. Stochastic exponent
 - h. Sharp bracket process and compensators
 - i. Ito formula II

5. Change of measure and Girsanov theorem

- a. Change of measure for random variables
- b. Absolutely continuous probability measures
- c. Girsanov theorem
- 6. Stochastic Differential Equations
 - a. Basic concepts
 - b. Existence and uniqueness of solutions
 - c. Selected properties of solutions
 - d. Jump diffusion processes and related IPDEs
 - e. Removal of drift
 - f. Backward SDEs

Homework	0-10%
Quizzes/Tests	45-50%
Graduate Project	0-10%
Final Exam	45-50%
	Homework Quizzes/Tests Graduate Project Final Exam

Syllabus prepared by: Tom Bielecki and Jeffrey Duan **Date**: 12/19/05