Math 581 – Finite Elements

Course Description from Bulletin: Various elements, error estimates, methods for solving systems of linear equations including multigrid, discontinuous Galerkin methods. Applications. (3-0-3)

Enrollment: Elective for AM and other majors.

Textbook(s):

 Claes Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method, Dover (2009), ISBN 048646900X, 978-0486469003.
C. Shu, Discontinuous Galerkin Methods: General Approach and Stability, Lecture Notes

Other required material: Matlab

Prerequisites: Undergraduate courses in numerical methods (such as Math 350) and in partial differential equations (such as Math 489), or consent of the instructor.

Objectives:

- 1. Students will understand how to discretize elliptic PDEs with the finite element method (FEM).
- 2. Students will understand the concepts of finite element spaces and error estimates.
- 3. Students will understand the basics of the multigrid method.
- 4. Students will understand the basics of the DG method.
- 5. Students will learn how to implement and use these numerical methods in Matlab (or another similar software package).
- 6. Students will improve their problem solving skills in computational mathematics.
- 7. Students will improve their presentation and writing skills.

Lecture schedule: 2 75-minute lectures per week

Course Outline:Lectures1. Introduction to FEM for elliptic problems8a. Variational formulation of a 1D model8b. FEM for the model problem with piecewise linear functions8c. An error estimate for the model problem8d. FEM for the Poisson equation8e. Some math concepts: Hilbert Spaces8f. Geometric interpretation of FEM8g. Natural and essential boundary conditions8h. Remarks on FEM software5a. Regularity requirement5

- b. Some examples of finite elements
- c. Interpolation with piecewise polynomials in 2D
- d. Discretization and error estimates for FEM for elliptic problems

	e. Adaptive methods	
3.	Some Applications in elliptic problems	2
	a. The elasticity problem	
	b. Stokes' problem	
4.	Methods for solving systems of linear equations	8
	a. Direct methods	
	b. Iterative methods: overview	
	c. Conjugate gradient method	
	d. Preconditioning	
	e. Multigrid methods	
5.	Discontinuous Galerkin (DG) methods	9
	a. Time discretization	
	b. DG method for conservation laws (hyperbolic equations)	
	c. DG method for convection-diffusion equations	
	d. DG method for PDEs with higher-order derivatives	

Assessment:	Homework	20-40%
	Computer Programs/Project	20-40%
	Quizzes/Tests	10-40%
	Final Exam	20-40%

Syllabus prepared by: Xiaofan Li and Shuwang Li **Date**: Nov. 15, 2011