Math 590 – Meshfree Methods

- **Course Description from Bulletin:** Fundamentals of multivariate meshfree radial basis function and moving least squares methods; applications to multivariate interpolation and least squares approximation problems; applications to the numerical solution of partial differential equations; implementation in Matlab. (3-0-3)
- **Enrollment:** Advanced graduate course in computational mathematics. Also suitable for graduate students in other (engineering) departments.
- **Textbook(s):** G. Fasshauer, *Meshfree Approximation Methods with Matlab*, Lecture Notes, IIT, 2005.

Other required material:

Prerequisites: Some exposure to computational mathematics and advanced analysis, consent of the instructor

Objectives:

1.

6.	Fast A	lgorithms		5
	a. Fast Fourier Transform for Non-uniform Data			2
	b. Partition of Unity Methods and Approximation of Point Cloud Data in F			Data in R [°]
	с.	Residual Iteration		
	d.	Adaptive Iteration		
	e.	Fast Multipole-type Algorithms		
7. Preconditioning Techniques				3
8. Generalized Hermite Interpolation			2	
9.	9. Solution of Partial Differential Equations			8
a. Elliptic PDEs via RBF Collocation				
b. RBF-Pseudospectral Methods for Time-Dependent PDEs				
Assess	ment:	Homework	10-30%	
		Computer Programs/Project	10-20%	
		Quizzes/Tests	20-50%	
		Final Exam	30-50%	

Syllabus prepared by: Greg Fasshauer and Xiaofan Li **Date**: Oct.19, 2005