

5.	Rao-Blackwell theorem, loss function optimality Hypothesis testing	8
	a. Methods of finding tests: likelihood ratio test, Bayesian test	, , , , , , , , , , , , , , , , , , ,
	b. Methods of evaluating tests: error probabilities, power function,	
	p-values, Neyman-Pearson Lemma	
6.	Interval estimation	6
	a. Pivoting method	
	 b. Size and coverage probability 	
7.	Asymptotic evaluation	6
	a. Point estimation: consistency, efficiency, comparisons	
	b. Asymptotic distribution of LRTs / confidence intervals	
8.	Introduction to linear models (time permitting)	3
	a. Simple linear regression: least squares	
	b. One-way ANOVA.	

Assessment:

Homework 10-30% Project 0-20% Quizzes/Tests 20-50% Final Exam 30-50%

Syllabus prepared by: Lulu Kang, and Sonja Petrovi (modification of original 563 syllabus prepared by Andre Adler, Fred Hickernell, and Lulu Kang)

Date: Jan. 7, 2011, Revised Jan. 26, 2012,

Revised Feb. 4, 2015. Revised Nov. 9, 2016. Revised by Despina Stasi, Sonja Petrovi, and Lulu Kang, Oct. 25, 2019.