Illinois Institute of Technology Physics

M.Sc. Comprehensive and Ph.D. Qualifying Examination PART I Thursday, August 22, 2019

4:00{8:00 PM

General Instructions

- 1. Each problem is to be done on a <u>separate</u> booklet. Label the front of each book with the identifying code letter you picked, the part number of the exam, and the number of the problem only; for example: A-I.6. Do <u>not</u> write your name or IIT ID number on any material handed in for grading.
- 2. Any numerical data not speci ed in a problem should be found in the table of constants at the front of the exam.
- 3. *DON'T PANIC:* It is not expected that each student will completely solve every problem. However, it is advisable to do a thorough job on those problems that you do solve.

Physical Constants

Speed of light in vacuum	С	=	2 <i>:</i> 998 10 ⁸ m/s		
Planck's constant	h	=	6 <i>:</i> 626 10 ³⁴ J s		
	~	=	<i>h=</i> 2		
		=	1 <i>:</i> 055 10 ³⁴ J s		
		=	6:582 10 ¹⁶ eV s		
Permeability constant	0	=	4 10 ⁷ N/A ²		
Permittivity constant	$\frac{1}{4}$	=	8:988 10 ⁹ N m ² /C ²		
Fine structure constant	- 0	=	$\frac{e^2}{4}$		
		=	$7:30^{-2}$ 10 $3 = \frac{1}{10}$		
Gravitational constant	G	=	6:67 10 ¹¹ m ³ /s ² kg		
Avogadro's number	NΔ	=	6:023 10 ²³ mole ¹		
Boltzmann's constant	k	=	1.381 10 ²³ J/K		
		=	8:617 10 ⁵ eV/K		
<i>kT</i> at room temperature	<i>k</i> 300 K	=	0.0258 eV		
Universal gas constant	R	=	8:314 J/mole K		
Stefan-Boltzmann constant		=	5:67 10 ⁸ W/m ² K ⁴		
Electron charge magnitude	е	=	1 <i>:</i> 602 10 ¹⁹ C		
Electron rest mass	m _e	=	9 <i>:</i> 109 10 ³¹ kg		
		=	0.5110 MeV/c ²		
Neutron rest mass	m _n	=	1 <i>:</i> 675 10 ²⁷ kg		
		=	939.6 MeV/c ²		
Proton rest mass	m_p	=	1 <i>:</i> 672 10 ²⁷ kg		
	,	=	938.3 MeV/c ²		
Deuteron rest mass	m _d	=	3 <i>:</i> 343 10 ²⁷ kg		
		=	1875.6 MeV/c ²		
Atomic mass unit ($C^{12} = 12$)	U	=	1 <i>:</i> 661 10 ²⁷ kg		
		=	931.5 MeV/c ²		
Mass of earth	M_{E}	=	5 <i>:</i> 98 10 ²⁴ kg		
Radius of earth	R_{E}	=	6 <i>:</i> 37 10 ⁶ m		
Mass of sun	$M_{ m S}$	=	1 <i>:</i> 99 10 ³⁰ kg		
Radius of sun	R_{S}	=	6 <i>:</i> 96 10 ⁸ m		
Gravitational acceleration at					
earth's surface	g	=	9.81 m/s ²		
Atmospheric pressure		=	1:01 10 ⁵ N/m ²		
Radius of earth's orbit		=	1 <i>:</i> 50 10 ¹¹ m		
Radius of moon's orbit		=	3 <i>:</i> 84 10 ⁸ m		

Conversion Factors

1 eV	=	1 <i>:</i> 602 10 ¹⁹ J	1 J	=	6 <i>:</i> 242 10 ¹⁸ eV
1 A	=	10 ¹⁰ m	1 Fermi	=	10 ¹⁵ m
1 barn (b)	=	10 ²⁸ m ²	1 in	=	2.54 cm
0 Celsius	=	273.16 K	1 cal	=	4.19 J

Problem 4: A satellite travels in a circular orbit of radius r_0 . Its rocket motor res, suddenly increasing its velocity by 8% along its direction of motion. What is the apogee of the new orbit? Make a sketch superimposing the new orbit on the original orbit.

Problem 5: Consider a three-dimensional ideal gas placed into a spherically symmetric potential, given by the formula:

$$V(r) = \begin{cases} 8 \\ < 1; & r \\ . \\ U_0 \ln (r=R); & r > R \end{cases}$$

(a) Find a single particle partition function.

A useful Gaussian integral:

$$\int_{0}^{7} x^{2} e^{-x^{2} = a} dx = \frac{p}{a^{3}} = 4$$

(b) Find an *N*-particle partition function for *N* 1. A useful Stirling formula:

$$N! = \frac{N}{e}^{N}$$

in this case.

- (c) What is the highest possible gas temperature?
- (d) Find a (Helmholtz) free energy of the gas.
- (e) Find an internal energy of the gas.
- (f) Find a speci c heat (capacity) of the gas.

Problem 6: Calculate a chemical potential for an ideal **two-dimensional** non-relativistic Fermi-gas of a surface density n_S and arbitrary temperature T. A fermion mass is equal to m and spin is 1=2. Then nd the chemical potential for a high and low temperature limits.

Problem 7: Using statistical mechanical principles, estimate the mean thickness of the earth's atmosphere in terms of the mass m of a nitrogen molecule, the gravitational acceleration g, and the average atmospheric temperature T. Evaluate your result numerically.

Problem 8:

(a) A cylindrical glass optical ber (radius *R*) with index of refraction, *n*, propagates light by total internal re ection at the air-glass interface. Give an expression for the maximum angle of incidence, , at the at end of the ber22.928 Td [(e)]TJnrnal re ectioblem8