Illinois Institute of Technology Physics

M.Sc. Comprehensive and Ph.D. Qualifying Examination PART II

Saturday, August 24, 2019 1:00{5:00 PM

General Instructions

- 1. Each problem is to be done on a <u>separate</u> booklet. Label the front of each book with the identifying code letter you picked, the part number of the exam, and the number of the problem only; for example: A-I.6. Do <u>not</u> write your name or IIT ID number on any material handed in for grading.
- 2. Any numerical data not speci ed in a problem should be found in the table of constants at the front of the exam.
- 3. *DON'T PANIC:* It is not expected that each student will completely solve every problem. However, it is advisable to do a thorough job on those problems that you do solve.

Physical Constants

Speed of light in vacuum	C	=	2:998 10 ⁸ m/s 6:626 10 ⁻³⁴ J s		
Planck's constant	h	=			
	~	=	h=2		
		=	1.055 10 ⁻³⁴ J s 6.582 10 ⁻¹⁶ eV s		
		=			
Permeability constant	0	=	4 10^{-7} N/A^2		
Permittivity constant	$\frac{1}{4}$ o	=	8.988 10 ⁹ N m ² /C ²		
Fine structure constant		=	$\frac{e^2}{4 0^{\sim}C}$		
		=	$7:30 10^{-3} = \frac{1}{137}$		
Gravitational constant	G	=	6:67 10 ⁻¹¹ m ³ /s ² kg		
Avogadro's number	$N_{\mathcal{A}}$	=	6:023 10 ²³ mole ⁻¹		
Boltzmann's constant	k	=	1 <i>:</i> 381 10 ⁻²³ J/K		
		=	8 <i>:</i> 617 10 ⁻⁵ eV/K		
kT at room temperature	<i>k</i> 300 K	=	0.0258 eV		
Universal gas constant	R	=	8:314 J/mole K		
Stefan-Boltzmann constant		=	5 <i>:</i> 67 10 ⁻⁸ W/m ² K ⁴		
Electron charge magnitude	е	=	1 <i>:</i> 602 10 ⁻¹⁹ C		
Electron rest mass	m_e	=	9 <i>:</i> 109 10 ⁻³¹ kg		
		=	0.5110 MeV/c ²		
Neutron rest mass	m _n	=	1.675 10 ⁻²⁷ kg		
		=	939.6 MeV/c ²		
Proton rest mass	m_p	=	1.672 10 ⁻²⁷ kg		
	ľ	=	938.3 MeV/c ²		
Deuteron rest mass	m _d	=	3:343 10 ⁻²⁷ kg		
	-	=	1875.6 MeV/c ²		
Atomic mass unit ($C^{12} = 12$)	u	=	1 <i>:</i> 661 10 ⁻²⁷ kg		
		=	931.5 MeV/c ²		
Mass of earth	\mathcal{M}_{E}	=	5.98 10 ²⁴ kg		
Radius of earth	$R_{\rm E}$	=	6 <i>:</i> 37 10 ⁶ m		
Mass of sun	$M_{\rm S}$	=	6 <i>:</i> 37 10 ⁶ m 1 <i>:</i> 99 10 ³⁰ kg		
Radius of sun	$R_{\rm S}$		6 <i>:</i> 96 10 ⁸ m		
Gravitational acceleration at	0				
earth's surface	g	=	9.81 m/s ²		
Atmospheric pressure	5	=	1:01 10 ⁵ N/m ²		
Radius of earth's orbit		=	1:50 10 ¹¹ m		
Radius of moon's orbit		=	3 <i>:</i> 84 10 ⁸ m		

Conversion Factors

1 eV	=	1 <i>:</i> 602 10 ⁻¹⁹ J	1 J	=	6 <i>:</i> 242 10 ¹⁸ eV
1 A	=	10 ⁻¹⁰ m	1 Fermi	=	10 ⁻¹⁵ m
1 barn (b)	=	10 ⁻²⁸ m ²	1 in	=	2.54 cm
0° Celsius	=	273.16 K	1 cal	=	4.19 J

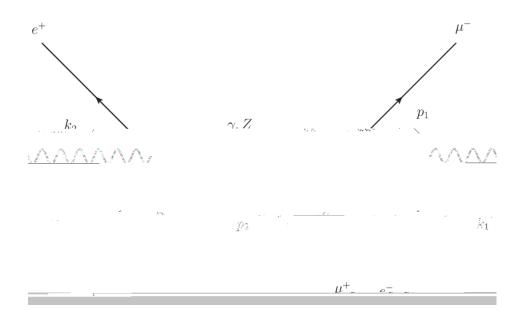
Problem 1: A long straight piece of copper (Cu) wire with a cross sectional radius *a*, and electrical resistance *R*, is bent in half to form two long parallel wires of length *I* whose centers are a distance *d* apart.

- (a) Neglecting any ux within the wire itself, nd the self inductance *L* of the wire in this con guration.
- (b) Assume a battery of emf " is connected to the wire at time t = 0. Derive an expression for the current i(t).

Problem 2: A point charge q is located at distances a and b from two perpendicular conducting half-planes, both at zero potential. Calculate the force acting on the charge q.

Problem 3: A surface of a non-conducting in nitely thin spherical shell of radius R is charged with the surface charge density () = $_0 \cos$. Find the electrostatic potential inside and outside the shell.

Hint: Recall the Laplace operator in spherical system of coordinates:


$$r^{2} = \frac{1}{r^{2}} \frac{@}{@r} r^{2} \frac{@}{@r} + \frac{1}{r^{2}} \frac{@}{sin} \frac{@}{@} sin \frac{@}{@} + \frac{1}{r^{2}}$$

Problem 6: Using WKB (quasi-classical) approximation, estimate a transmission coe cient through a potential barrier:

$$U(x) = \begin{cases} 8 \\ < 0 & x > jx_0 j \\ \vdots & U_0 & \frac{1}{2}m!^2 x^2 & x & jx_0 j \end{cases}$$

for a particle of mass m and energy $0 < E < U_0$. To de ne x_0 , use a continuity requirement for the potential energy U(x).

Problem 7:

2