## Illinois Institute of Technology Physics

M.Sc. Comprehensive and Ph.D. Qualifying Examination PART II

## Physical Constants

| Speed of light in vacuum           | С              | = | 2 <i>:</i> 998 10 <sup>8</sup> m/s                      |  |  |
|------------------------------------|----------------|---|---------------------------------------------------------|--|--|
| Planck's constant                  | h              | = | 6 <i>:</i> 626 10 <sup>34</sup> J s                     |  |  |
|                                    | ~              | = | <i>h=</i> 2                                             |  |  |
|                                    |                | = | 1 <i>:</i> 055 10 <sup>34</sup> J s                     |  |  |
|                                    |                | = | 6:582 10 <sup>16</sup> eV s                             |  |  |
| Permeability constant              | 0              | = | 4 10 <sup>7</sup> N/A <sup>2</sup>                      |  |  |
| Permittivity constant              | $\frac{1}{4}$  | = | 8:988 10 <sup>9</sup> N m <sup>2</sup> /C <sup>2</sup>  |  |  |
| Fine structure constant            | - 0            | = | $\frac{e^2}{4}$                                         |  |  |
|                                    |                | = | $7:30^{-2}$ 10 $3 = \frac{1}{10}$                       |  |  |
| Gravitational constant             | G              | = | 6:67 10 <sup>11</sup> m <sup>3</sup> /s <sup>2</sup> kg |  |  |
| Avogadro's number                  | NΔ             | = | 6:023 10 <sup>23</sup> mole <sup>1</sup>                |  |  |
| Boltzmann's constant               | k              | = | 1.381 10 <sup>23</sup> J/K                              |  |  |
|                                    |                | = | 8:617 10 <sup>5</sup> eV/K                              |  |  |
| <i>kT</i> at room temperature      | <i>k</i> 300 K | = | 0.0258 eV                                               |  |  |
| Universal gas constant             | R              | = | 8:314 J/mole K                                          |  |  |
| Stefan-Boltzmann constant          |                | = | 5:67 10 <sup>8</sup> W/m <sup>2</sup> K <sup>4</sup>    |  |  |
| Electron charge magnitude          | е              | = | 1 <i>:</i> 602 10 <sup>19</sup> C                       |  |  |
| Electron rest mass                 | m <sub>e</sub> | = | 9 <i>:</i> 109 10 <sup>31</sup> kg                      |  |  |
|                                    |                | = | 0.5110 MeV/c <sup>2</sup>                               |  |  |
| Neutron rest mass                  | m <sub>n</sub> | = | 1 <i>:</i> 675 10 <sup>27</sup> kg                      |  |  |
|                                    |                | = | 939.6 MeV/c <sup>2</sup>                                |  |  |
| Proton rest mass                   | $m_p$          | = | 1 <i>:</i> 672 10 <sup>27</sup> kg                      |  |  |
|                                    | ,              | = | 938.3 MeV/c <sup>2</sup>                                |  |  |
| Deuteron rest mass                 | m <sub>d</sub> | = | 3 <i>:</i> 343 10 <sup>27</sup> kg                      |  |  |
|                                    |                | = | 1875.6 MeV/c <sup>2</sup>                               |  |  |
| Atomic mass unit ( $C^{12} = 12$ ) | U              | = | 1 <i>:</i> 661 10 <sup>27</sup> kg                      |  |  |
|                                    |                | = | 931.5 MeV/c <sup>2</sup>                                |  |  |
| Mass of earth                      | $M_{E}$        | = | 5 <i>:</i> 98 10 <sup>24</sup> kg                       |  |  |
| Radius of earth                    | $R_{E}$        | = | 6 <i>:</i> 37 10 <sup>6</sup> m                         |  |  |
| Mass of sun                        | $M_{ m S}$     | = | 1 <i>:</i> 99 10 <sup>30</sup> kg                       |  |  |
| Radius of sun                      | $R_{S}$        | = | 6 <i>:</i> 96 10 <sup>8</sup> m                         |  |  |
| Gravitational acceleration at      |                |   |                                                         |  |  |
| earth's surface                    | g              | = | 9.81 m/s <sup>2</sup>                                   |  |  |
| Atmospheric pressure               |                | = | 1:01 10 <sup>5</sup> N/m <sup>2</sup>                   |  |  |
| Radius of earth's orbit            |                | = | 1 <i>:</i> 50 10 <sup>11</sup> m                        |  |  |
| Radius of moon's orbit             |                | = | 3 <i>:</i> 84 10 <sup>8</sup> m                         |  |  |

## **Conversion Factors**

| 1 eV       | = | 1 <i>:</i> 602 10 <sup>19</sup> J | 1 J     | = | 6 <i>:</i> 242 10 <sup>18</sup> eV |
|------------|---|-----------------------------------|---------|---|------------------------------------|
| 1 A        | = | 10 <sup>10</sup> m                | 1 Fermi | = | 10 <sup>15</sup> m                 |
| 1 barn (b) | = | 10 <sup>28</sup> m <sup>2</sup>   | 1 in    | = | 2.54 cm                            |
| 0 Celsius  | = | 273.16 K                          | 1 cal   | = | 4.19 J                             |

**Problem 1:** A particle of charge q and mass m is placed at rest at t = 0 in perpendicular, constant, electric and magnetic elds  $\mathbf{E} = E\mathbf{2}$  and  $\mathbf{B} = B\mathbf{3}$ . Calculate the trajectory of the particle and describe it.

**Problem 2**: A particle of mass *M* and magnetic dipole moment **m** is placed on the axis of a circular current loop of radius *a* and current *I* (which is kept xed), at a distance  $z_0$  from the center of the loop. **m** is aligned in the direction of the loop eld. ( $z_0$  is not necessarily much greater or smaller than *a*.)

- (a) What is the force of attraction between the loop and m?
- (b) When **m** is released, it moves toward the center of the loop. What is its kinetic energy when it arrives there? (Assume that **m** is constrained to the *z* axis.)
- (c) If the particle is originally placed at the center of the loop, what is the frequency of small oscillation about this position for motion along the *z* axis?



**Problem 3**: A plasma generated inside a long hollow cylinder of radius *R* has the following charge distribution:

$$(r) = \frac{0}{[1 + (r=a)^2]^2};$$

where r is the distance to the center and  $_0$  and a are constants. Determine the electric eld everywhere.

**Problem 4**: Calculate the transmission and re ection coe cients of a particle having total energy E at the potential barrier given by

$$V(x) = \begin{array}{c} 8 \\ < 0 \\ V_0 \\ 0 \\ 0 \\ x > a \end{array}$$

for  $E > V_0$  case. Under what condition does the barrier turn out to be 100% transparent?

**Problem 5**: A plane rigid rotor having a moment of inertia *I* and an electric dipole moment **d** is placed in a homogeneous electric eld **E**